
Mixed Language Programming,
Fortran 2003 and C

Bo Einarsson

January 19, 2009

Introduction
At a conference in Kyoto 1995 I held a lecture (Einarsson, 1995) about the use
of routines in C from Fortran, and the opposite. It was then necessary to make
this somewhat differently on systems from various manufacturers.

Since Fortran 2003 has standardized mixing of Fortran and C, I have trans-
formed those examples into the standard, not entirely successfully in the last
case.

I have used Sun Fortran 95 8.2 2005/10/13, which contains parts of Fortran
2003. There is a minor error in the Sun implementation, in the standard

subroutine sub(f, b) bind(c)

has to be written with a comma in order to avoid compilation error:

subroutine sub(f, b) , bind(c)

A similar remark is valid for functions.
With this modern method we have to declare in the Fortran routine all

interchange variables to be of the type used in C, see (Metcalf et al., 2004,
Table 14.1). In order to avoid doing this I find it simpler to check that the
C-type and the Fortran-type agree, that is that the two have the same KIND.
For this purpose I have written the following simple program, which is easy to
modify. On Sun I only got a problem with logical (boolean) variables. If such
are used you either have to declare them not to be of the standard kind (if they
are to be used also in C), or convert them in a communication routine.

Program CandF
! Program to test cooperation between C and Fortran
use, intinsic :: iso_c_binding
IF (c_int == KIND(1)) THEN

WRITE (*,*) ’The KIND of c_int = ’, c_int, &
’ agrees with INTEGER = ’, KIND(1)

ELSE

1

WRITE (*,*) ’The KIND of c_int = ’, c_int, &
’ does not agree with INTEGER = ’, KIND(1)

END IF

IF (c_float == KIND(1.0)) THEN
WRITE (*,*) ’The KIND of c_float = ’, c_float, &

’ agrees with REAL = ’, KIND(1.0)
ELSE

WRITE (*,*) ’The KIND of c_float = ’, c_float, &
’ does not agree with REAL = ’, KIND(1.0)

END IF

IF (c_double == KIND(1.0D0)) THEN
WRITE (*,*) ’The KIND of c_double = ’, c_double, &

’ agrees with DOUBLE PRECISION = ’, KIND(1.0D0)
ELSE

WRITE (*,*) ’The KIND of c_double = ’, c_double, &
’ does not agree with DOUBLE PRECISION = ’, KIND(1.0D0)

END IF

IF (c_bool == KIND(.TRUE.)) THEN
WRITE (*,*) ’The KIND of c_bool = ’, c_bool, &

’ agrees with LOGICAL = ’, KIND(.TRUE.)
ELSE

WRITE (*,*) ’The KIND of c_bool = ’, c_bool, &
’ does not agree with LOGICAL = ’, KIND(.TRUE.)

END IF

IF (c_char == KIND(’A’)) THEN
WRITE (*,*) ’The KIND of c_char = ’, c_char, &

’ agrees with CHARACTER = ’, KIND(’A’)
ELSE

WRITE (*,*) ’The KIND of c_char = ’, c_char, &
’ does not agree with CHARACTER = ’, KIND(’A’)

END IF

IF (c_float_complex == KIND((1.0, 1.0))) THEN
WRITE (*,*) ’The KIND of c_float_complex = ’, c_float_complex, &

’ agrees with COMPLEX = ’, KIND((1.0, 1.0))
ELSE

WRITE (*,*) ’The KIND of c_float_complex = ’, c_float_complex, &
’ does not agree with COMPLEX = ’, KIND((1.0, 1.0))

END IF

END Program CandF

2

Running this program on Sun gave

The KIND of c_int = 4 agrees with INTEGER = 4
The KIND of c_float = 4 agrees with REAL = 4
The KIND of c_double = 8 agrees with DOUBLE PRECISION = 8
The KIND of c_bool = 1 does not agree with LOGICAL = 4
The KIND of c_char = 1 agrees with CHARACTER = 1
The KIND of c_float_complex = 4 agrees with COMPLEX = 4

1 Use of a subroutine and a function written in
Fortran from a program in C

We here describe a case where first a program written in Fortran and later a
routine in C both call a subroutine and a function in Fortran. Both the main
program and the subroutine calls the function.

The main program in Fortran is in the file f2sam.f while both the subroutine
and the function are in the file sam.f.

% cat f2sam.f
program f2sam
external f
integer f
character*7 s
integer b(3)
call sam(f, b(2), s)
write(6,10) b(2), f(real(b(2))), s

10 format(i5,i5,10x,a7)
stop
end program f2sam

% cat sam.f90
subroutine sam(f, b, s)
external f
character*7 s
integer b, f
x = 1.3
s = ’Bo G E ’
b = f(x)
end subroutine sam
integer function f(x)
f=3*x**3
return
end function f

Running these files give the result 6 648 Bo G E.

3

We now wish to be able to call the file sam.f with the subroutine sam and
the function f from C without any changes in these two! We therefore first write
a communication file c_sam.f90 in Fortran

subroutine c_sam(c_f, b, s) , bind(c)
use, intrinsic :: iso_c_binding
implicit none
external c_f
character(len=7) :: s
integer (c_int) :: b, c_f
real (c_float) :: x
integer, external :: f
call sam(f,b,s)
end subroutine c_sam

integer (c_int) function c_f(x) , bind(c)
use, intrinsic :: iso_c_binding
implicit none
real(c_float) :: x
integer, external :: f
c_f=f(x)
return
end function c_f

and then a main program in C which calls these communication routines c_sam
and c_f, who in turn call the “pure” Fortran routines sam and f.

% cat c2sam.c
#include <stdio.h>
#include <math.h>

/* C call of Fortran routines via communication routines */

int c_f(float *);
int c_sam(int (*c_f)(), int *, char *);

int main()
{

char s[7];
int b[3];
float x;

c_sam(c_f, &b[1], s);
x = b[1];
printf(" %d %d %s \n ", b[1], c_f(&x), s);
return 0;

}

4

Running with

f95 -c c_sam.f90 sam.f90
cc -c c2sam.c
cc c2sam.o c_sam.o sam.o
a.out

give the result 6 648 Bo G E as before.

2 Use from Fortran of a matrix assigned values
in C

In this case we have a matrix where one element is assigned a value in a C
routine, and we wish to use that value in a Fortran program. We of course have
to accept the the indices are in reversed order, and that those in C have to be
reduced by one compared with those in Fortran. The C program mlp4.c looks
like

#include <stdio.h>
#include <math.h>

/* Matrix management */

void
p(a,i,j)
int *i, *j, a[3][2]; /* Order 3 2 */
{
a[*j-1][*i-1] = 99; /* Indices reduced by 1 */
}

while the main program in Fortran mlp3.f90 is

program mlp3
use, intrinsic :: iso_c_binding
interface

subroutine p(a,i,j) , bind(c)
use iso_c_binding

integer (c_int) :: a(2,3)
integer (c_int) :: i, j

end subroutine p
end interface
integer (c_int) :: a(2,3) ! Order 2 3
call p(a,1,3)
write (6,10) a(1,3)

10 format (1x,i9)
stop
end program mlp3

5

These are run with

cc -c mlp4.c
f95 -c mlp3.f90
f95 mlp3.o mlp4.o
./a.out

with the result 99.

3 Use of Fortran COMMON in a C program
As in the first example 1 we wish to use a Fortran routine both from Fortran
and C, therefore we once again need a communication routine. The COMMON
block is assigned its values in the routine sam in the file mlp2.f. In Fortran we
thus have a main program in the file mlp0.f90

program mlp0
implicit none
integer i
real r
common /name/ i, r
call sam
write(*,*) i, r
end program mlp0

which together with the routine sam in the file mlp2.f

subroutine sam()
common /name/ i, r
i = 786
r = 3.2
return
end subroutine sam

give the result 786 3.2.
If we only wish to use the routine sam from C it is quite simple, we just

modify sam to the file mlp2.f90

subroutine sam(), bind(c)
use, intrinsic :: iso_c_binding

integer(c_int) :: i
real(c_float) :: r
common /com/ i, r
bind(c) :: /com/

i = 786
r = 3.2
return
end subroutine sam

6

and use the C program in the file mlp1.c

#include <stdio.h>
#include <math.h>

/* Use of a COMMON Block from Fortran */

struct {
int i; float r;

} com;

main()
{

sam();
printf(" %d %f \n ",com.i,com.r);

}

and run with

cc -c mlp1.c
f95 -c mlp2.f90
cc mlp1.o mlp2.o
a.out

and obtain the correct result.

Since it is much better if we do not have to change the original Fortran routine
sam in the file mlp2.f to the one in the file mlp2.f90, we have to create another
communications routine mlp2_c.f90. At my tests on Sun it is evident that it
does not work with letting the COMMON block be used from both C and Fortran
(except the Fortran routine in which it is assigned its values). I therefore in the
following use the two names name and com on what is really the same COMMON
block. Running the program in Fortran can now be done as earlier.

At the use from C you first use the communication routine in the file
mlp2_c.f90

subroutine sam_c(), bind(c)
use, intrinsic :: iso_c_binding

implicit none
integer(c_int) :: i
real(c_float) :: r
common /com/ i, r
bind(c) :: /com/
integer :: i1
real :: r1
common /name/ i1, r1

call sam()
i = i1

7

r = r1
return
end subroutine sam_c

Here there are two COMMON blocks, one with the name name aimed at Fortran
and one with the name com aimed at C. Since the block is assigned its values in
Fortran, those values have to be copied into the variables in the COMMON block
aimed at C. If the C program in the file mlp1.c now is changed to call the
Fortran routine sam_c (instead of as earlier the Fortran routine sam), using the
file with the name mlp5.c, the program is run with

f95 -c mlp2.f
f95 -c mlp2_c.f
cc -c mlp5.c
f95 mlp5.o mlp2.o mlp2_c.o (or cc mlp5.o mlp2.o mlp2_c.o)
a.out

and gives the correct result. If you wish to assign new values in C for the COMMON
variables an additional communication routine has to be created.

All the files mentioned here are available for testing at
http://www.mai.liu.se/∼boein/vita/code/.

References
Einarsson, B. (1995). Mixed Language Programming, Part 4, Mixing

ANSI-C with Fortran 77 or Fortran 90; Portability or Transportabil-
ity? In Current Directions in Numerical Software and High Perfor-
mance Computing, International Workshop, Kyoto, Japan. IFIP WG 2.5.
http://www.nsc.liu.se/∼boein/ifip/kyoto/einarsson.html.

Metcalf, M., Reid, J., and Cohen, M. (2004). Fortran 95/2003 explained. Oxford
University Press. ISBN 0-19-852693-8.

8

